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Abstract 
Recent applications of exact random-walk techniques 
to crystallographic structure-factor statistics have 
now been extended to multivariate joint probability 
density functions of several structure factors. The 
technique of deriving such multivariate exact density 
functions is introduced, and is applied to the study 
of the simplest sign relationship: Y~I, in the space 
group P1. An exact expression is obtained for the 
probability that the sign of the normalized structure 
factor E(2h 2k 2l) is positive, given the magnitudes 
of E(2h 2k 2l) and E(h k l), and an extensive numeri- 
cal examination of this new expression - as compared 
with the conventional asymptotic formula for this 
probability - is presented. It is shown that the 
asymptotic formula usually underestimates the prob- 
ability that E(2h 2k 2l) is positive, the discrepancies 
between the exact and asymptotic results being rather 
serious when the atomic composition of the asym- 
metric unit is heterogeneous (even moderately so), 
and when the number of atoms is small; a paucity of 
atoms leads to significant discrepancies even in the 
equal-atom case. On the other hand, for large asym- 
metric units of low heterogeneity and for high E 
values, the exact and asymptotic expressions agree 
very well in their predictions. The qualitative 
behaviour of the new exact expression is consistent 
with the known features of the ~1 relationship and 
its statistical interpretations. 

Introduction 
Recent applications of exact random-walk techniques 
to the derivation of probability density functions 
(p.d.f.'s) of a single structure factor (Shmueli, Weiss, 
Kiefer & Wilson, 1984; Shmueli, Weiss & Kiefer, 
1985) yield exact expressions for the desired p.d.f.'s, 
which are readily computed to any required accuracy. 
These new p.d.f.'s are given as Fourier or Fourier- 
Bessel series, possessing favourable convergence 
properties. Although these new p.d.f.'s have not yet 
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been  generalized to all the space groups, like the 
existing Gram-Charlier expansions (Shmueli & Wil- 
son, 1981; Shmueli & Kaldor, 1981, 1983), their per- 
formance is much superior to that of the Gram- 
Charlier series, especially in cases of large discrepan- 
cies between observed distributions and those predic- 
ted (Wilson, 1949) on the basis of the central limit 
theorem (e.g. Cramer, 1951). It should be pointed out 
that random-walk p.d.f.'s are not new in crystallogra- 
phy (e.g. Hauptman & Karle, 1952; Wilson, 1952; 
Bertaut, 1955a); the novel aspect pursued in this 
study is their representation in terms of Fourier series. 

These successful developments, and the simplicity 
and generality of the underlying statistical principles 
(e.g. Weiss & Kiefer, 1983), suggested to us an investi- 
gation of the joint p.d.f.'s of several structure factors 
with the obvious purpose of constructing exact 
expressions applicable to direct methods of sign and 
phase determination. Such expressions are of interest 
for two main reasons: (i) the existing direct-methods 
formalisms are either based on the central limit 
theorem approximation, or they consist of Gram- 
Charlier-type generalizations of the latter (for a com- 
prehensive review see, for example, Giacovazzo, 
1980), and (ii) the expressions used in practice are 
well known to be approximate, and the goodness of 
these approximations cannot be predicted in advance 
except for equal-atom structures that obey the 
assumptions of the Wilson (1949) statistics, in which 
case the approximations are known to be very good. 

Some preliminary results of our study of the exact 
statistical aspects of the ~1 and Y~2 relationships, in 
the space group P1, have been communicated (Weiss, 
Shmueli, Kiefer & Wilson, 1984a) and are given 
elsewhere (Weiss, Shmueli, Kiefer & Wilson, 1984b). 

The purpose of the present paper is (i) to introduce 
the mathematical technique for the systematic deriva- 
tion of the exact joint p.d.f, of several structure fac- 
tors, (ii) to apply this technique to the derivation of 
an exact probability for a positive sign of the structure 
factor E2h, given the magnitudes I Ehl and I E2hl, where 
Eh is the normalized structure factor of reflection 
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h(h k 1), and (iii) to compare the exact probability for 
the above ~ relationship, in the space group P1, with 
the usual asymptotic one - the hyperbolic tangent 
formula (Cochran & Woolfson, 1955; Klug, 1958) - 
with regard to the magnitudes of the I E[ values, the 
number of atoms in the asymmetric unit, and the 
effect of the presence of heavy atoms. 

As will be seen from what follows, the exact 
expression for the probability for the positive sign of 
E2h reduces to the Cochran & Woolfson (1955) for- 
mula in the limit of a large number of equal atoms. 
Significant deviations of the asymptotic result from 
that derived below may be caused by a paucity of 
atoms or a heterogeneous composition of the asym- 
metric unit. 

Mathematical analysis 

The technique proposed by Shmueli et al. (1984) for 
the representation of the p.d.f, of a single structure 
factor as a Fourier series is readily generalized to the 
multidimensional case. 

Let E = (El, E2,. . . ,  Ea) be the vector of the com- 
ponent normalized structure factors, where 

N / k  

E~ = Ehs = E nj~j(h,), (1) 
j = l  

n~ = (2) 
"~,..~ 3 1 

is the normalized scattering factor, and 
k 

~(h~) = Y~ exp [2¢rihsr(Pqrj +tq)] (3) 
q = l  

is the trigonometric structure factor (International 
Tables for X-ray Crystallography, 1952) of the j th  
atom. This representation explicitly includes its 
dependence on the space-group symmetry of the crys- 
tal; in (1) N is the number of atoms in the unit cell, 
k is the order of the point group times the multiplicity 
of the Bravais lattice, fj is the scattering factor of the 
j th  atom, including its vibration parameters, hs is the 
diffraction vector corresponding to the normalized 
structure factor E~, and Pq and tq are the rotation 
and translation parts of the qth space-group operator 
respectively, 

This analysis is confined to the centrosymmetric 
case, and is based on the following assumptions: 

(i) All the atoms are located in general positions. 
(ii) Dispersion is neglected. 

(iii) The atomic phase factors, 2zrh.r, are uniformly 
distributed in the (0, 2w) range, and the position 
vectors of different atoms are rationally independent 
(Hauptman & Karle, 1953; Hauptman, 1964). 

(iv) The contributions of different atoms, within 
the asymmetric unit of the space group, are 
independent. 

We wish to derive the joint probability density 
function of the vector E, the components of which 
can be regarded as random variables. 

Clearly, each of the individual E 's  may be non 
zero only in the range -Emax < Es < Emax, where 

N 

Emax = ~ nj ~ 1/a.  (4) 
J = l  

The required p.d.f, can therefore be expanded in the 
multiple Fourier series 

p(E)=(a/2)d~ Cu exp ( -  7rit~urE), (5) 
I1 

where u = (ul, u2 , . . . ,  Ud) is a vector of the summation 
indices. The coefficients, Ca, are found from 

Ca = .. .  p(E)exp(wiaurE)dmE (6) 
--1/or --1/or 

oo 

= ~ . . .  ~ p(E) exp (TriauTE)dmE 
--CO --OO 

= C(~'c~u), (7) 

where m is the number of independent component 
structure factors, Es, and C(to) is the characteristic 
function (e.g. Kendall & Stuart, 1963) corresponding 
to the p.d.f, p(E). For example, if p ( E ) =  p(Eh, E2h), 
a double Fourier series (5) is needed for the p.d.f., 
while only one integral needs to be evaluated in (6) 
since Eh and E2h are correlated. We therefore have 
d = 2 and m = 1 for the above example, which will 
be considered in detail below. 

The characteristic function, C (to), can be regarded 
as an expectation value of the exponential 
exp (/toTE), and can thus be evaluated from known 
statistical properties of the component structure fac- 
tors. We thus have 

C(to) = (exp ( ito TE)) 

: ( e x p ( i  d~_ t°rE,)> 

= exp i F. COrnj~(hr) 
r = l  j = l  

N/ k  

= I'I Cj(to), (9) 
j = l  

where Cj(to) is the contribution of the j th  atom to 
the characteristic function, and use has been made 
of (1) and assumption (iv) concerning the indepen- 
dence of the atomic contributions. 

The construction of the joint p.d.f. (5) thus requires: 
(i) evaluation of the atomic characteristic func- 

tions C~(to), from (3) and (8), and 
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(ii) replacement of the components of to by the 
appropriate functions of the summation indices; in 
the present case, tor ~ erau~. 

The above formalism is a general one for all the 
centrosymmetric space groups, and is valid under the 
assumptions stated; it does not account for non- 
crystallographic symmetry. The corresponding treat- 
ment of non-centrosymmetric space groups is closely 
analogous to the above, and effects of non-crystallo- 
graphic symmetry can be allowed for by suitably 
modified trigonometric structure factors (e.g. 
Shmueli, Weiss & Kiefer, 1985). 

The ~1 relationship in P1 

The required joint p.d.f, is p(Eh, E2h), which will 
enable us to find an exact expression for the probabil- 
ity that E2h is positive - given the magnitudes I Eh[ 
and IE2hl. 

We have, for the space group P1, 

~ ( h ) = 2 c o s  0j and ~(2h)=2cosE0j,  (10) 

where Oj = 21rh.rj is taken as uniform in the [0, 2~r] 
range (see above). The atomic characteristic function, 
C~(tol, to2) is thus given by (8) as 

Cj(tob to2) = (exp [inj(tol cos Oj + to2 cos 20j)]) 

= (1 /2~)  S exp[inj(tol cos 0 
--"n- 

+ to2 cos 20)] dO. (11) 

It is convenient to reduce this integral to series form, 
by making use of the expansion 

oo 

exp( iucosO)= ~, i~J~(u)exp(isO) (12) 
$ ~ - - 0 0  

[Gradshteyn & Ryzhik (1980), entry: 8.511(4)]. We 
can then readily perform the integration over 0 in 
(11), and making use of some basic properties of 
Bessel functions of integer order (e.g. Abramowitz & 
Stegun, 1972), we obtain 

oo 

C j ( t o l ,  t ° 2 ) =  E iamJEm(Enl~°l)Jm(Enjto2) 
Ftl =--OO 

= Rj+ ilj, (13) 

where 

R j ( t o l ,  ( 0 2 ) =  Jo(Enjtol)Jo(Enjm2) 
co 

+2 Y, (-1)mJ4m(Enjtox)J2m(Enjto2) (14) 
m = l  

and 
oo 

/j(tol, t0E)=2 Y. (-1)~+IJ4m+E(2njtol)J2m+t(2njto2). 
m = 0  

(15) 

The characteristic function corresponding to the 
required p.d.f, is now obtained by substituting (13)- 
(15) into (9), and the Fourier coefficients, to be used 
in (5), follow readily. On making the replacements: 
to1 ~ 7ras, to2-~ ~at, and introducing the abbreviations 

Rj~t= Rj(was, erott) and /jst = Ij(Tras, 7tort), (16) 

the Fourier coefficient becomes 

N/2 
Cst = I-I (Rjst+ilj, t)=R,t+iI,, .  (17) 

j = l  

The Fourier series in (5) can be simplified by mak- 
ing use of the symmetry of its coefficients. Thus, /st 
is a sum of products, each containing an odd number 
of/j,t. Similarly, Rst consists of the sum of all terms, 
in which there is an even number of/jst. Consequently, 
one can determine the relevant properties of Rst and 
/st by examining those of Rjst and /jst. The explicit 
formulae in (14) and (15) allow us to write 

gj~t =gjsr = gj~r = gjst, 
(18) 

/j~t =/is, and /jsr = -/jst, 

which leads to 

R~t = Rsr = Ra = Rst, 
(19) 

I~, =/st and /~r = -Lt.  

Making use of these relationships, we can express 
the required p.d.f, as 

p(E1, E2) = (a  2/4)~ 1 + 2 ~ [ R~o cos (TrsaE1) 
I. s = l  

+ Ros cos (¢rsaE2)] 
co co 

+ 4 E E [R~t cos (~totE2) 
s = l  t-----1 

+ Ist sin (~rtaE2)] cos (~rsaE1)~, (20) 
.J 

where E1 = Eh and 22 = E2h. Notice that in this 
formula 

N/2 
Rso = Ros = 1-I Jo(27rsan~). (21) 

j----1 

The conditional density, p(E2]E~), is given by 

p(B2[E1) =p(E1, E2)/p(EI), (22) 

where p(E~) is obtained as 

p ( E ~ ) = ( a / 2 ) { l + 2  s = l  ~ Rsocos(TrsaE,)}, (23) 

which, together with the explicit expression (21), 
agrees with the p.d.f, of the structure factor as given 
by Shmueli et al. (1984). 

Finally, the probability that E2h is positive, condi- 
tioned on the knowledge of I E hi and to be denoted 
by p+(2hlh), is readily obtained using Bertaut's iden- 
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tity: p÷ = (1 +p_/p÷)-~ (Bertaut, 1955b) with (20). We 
obtain 

p+(2hlh) = ½(1 + O/F)  (24) 

where 
co co 

0 =a2 ~, 2 Is, cos(Trst~Eh) Sin(TrtalE2hl) (25) 
s = l  t = l  

and 

r=(a2/4)  1+2 Y. Rso[COS(TrSaEh) 
s = l  

+ cos ( = s . E 2 . ) ]  

+4 ~ Y. R~, cos (TrSaEh) COS (~rtaE2h . 
$ = 1  t = l  

(26) 

Numerical results, obtained using these exact for- 
mulae, will be presented and discussed in the next 
section. 

Equations (20) and (24) are exact. We can, 
however, recover the classical approximation, first 
derived by Vand & Pepinsky (1953) and by Cochran 
& Woolfson (1955), by keeping the lowest-order 
Bessel functions in (14) and (15). The rederivation 
of the classical approximation from the exact result 
is given in Appendix A. While it is also possible to 
derive systematic corrections to the approximate 
result, the algebra becomes extremely complicated, 
so that there is little advantage in not using the exact 
series representations (20) and (24) when the 
asymptotic classical approximation is inadequate. 
The magnitudes of the differences between approxi- 
mate and exact formulae for p+(2hlh) are discussed 
below. 

Examples and discussion 

The exact expression for the probability p+(2h[h), 
given by (24), has been evaluated for a range of 
hypothetical atomic compositions and values of IE2hl 
and I Ehl. These results were accompanied by the 
evaluation of corresponding values of the asymptotic 
probability formula 

p+(2hlh) = ½+½ tanh [(0"3/20"32/2)K] (27) 

(Cochran & Woolfson, 1955; Klug, 1958), where K = 
1). 

The computations were programmed in Fortran 
and use has been made of a local library subroutine 
in the evaluation of the Bessel functions J,,(x) for a 
large range of their orders. Preliminary tests showed 
that satisfactory convergence of the various summa- 
tions can be attained by taking the first ten terms of 
the Bessel-function series (14) and (15), and the first 
twenty terms in a single Fourier summation in (24). 
The assumed composition of the asymmetric unit of 

the space group P1 was taken as C,X,,,, and the 
composition-dependent quantities that appear in 
(14), (15), (24) and (27) were expressed in terms of 
n, m and p - the ratio of the atomic numbers Zc and 
Zx (e.g. Shmueli, 1979). We thus have 

uc=l /[2(n+mp)] ,  ux=p/[2(n+mp)] ,  

a=[2(nu~+mu2)]  '/2 , IElmax= l / a ,  

10"30"23/2=(/1+ mp3)/[2(n+ mp2)] 3/2, 

where p = Zx /Zc ,  Uc and Ux are unitary scattering 
factors of C and X respectively and a is defined by 
(4). Note that the unitary and normalized scattering 
factors [cf. (2)] are related by uj = anj. 

The exact and approximate expressions for 
p+(2hlh) were compared with respect to the effects of 
(i) the values of IE.I and IE2d, (ii) the number of 
atoms in the asymmetric unit, and (iii) the atomic 
heterogeneity, as given by the value of p defined 
above. Only sample comparisons can be presented 
within the available space, and these are by no means 
an exhaustive description of the effects of the above 
three strongly interrelated variables. 

Fig. 1 shows the effect of the magnitude of the I EI 
values, for the moderately heterogeneous assumed 
composition C3oKr2 (p = 6). The magnitude of E2h 
was taken as 1.75, and IEhl was allowed to vary from 
0.5 to 3.0 in steps of 0.1. Similar calculations for 
higher values of p result in steeper sigmoid curves 
for both approximate and exact probabilities, and in 
increasing discrepancies between the probability 
values both above and below the crossover point. As 

1.0 

0.5 

• ÷ ÷ ÷ ÷ ÷ ÷ ~ . . ~ 2 ~  

f +I"+++ 

. . . .  . . . . . . .  'z'd. . . . . . . . .  2 .5  

IEhl 

Fig. 1. Effect of the magnitudes of E values. The exact and approxi- 
mate probabilities p+(2hlh) for the positive sign of E2h as a 
function of [Eh], for the assumed composition C3oKr 2 of the 
asymmetric unit of PI. The magnitude of E2h is taken as 1.75. 
The solid line denotes the approximate probability, computed 
from (27), and the centres of the '+' signs denote the values of 
the exact probability, obtained from (24). 
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the heterogeneity is decreased both curves approach 
each other, until in the equal-atom case they very 
nearly coalesce - for 32 atoms in the asymmetric unit; 
effects of paucity of atoms are negligible for this 
number of equal atoms. A common feature of such 
comparisons is that the approximate expression 
underestimates the probability for high values of IEhl, 
and overestimates it at the low side of this I EI. No 
such crossover is reported by Klug (1958), who bases 
his conclusions on the first few terms in the Edgeworth 
expansion for the relevant joint p.d.f. The crossover 

i s ,  however, present in Giacovazzo's (1978, p. 565) 
work on one-phase seminvariants. 

The effect of  the number of atoms in the asymmetric 
unit of P1 is shown in Fig. 2. The atomic composition 
is here chosen as C,X2, and the probabilities are 
computed, for fixed IEI values, as a function of the 
number of carbons. Equal and reasonably large value., 
of IEI have been chosen for these illustrations (lEvi = 
IE2d = 2.25). Fig. 2(a)  shows the result for the equal- 
atom case, while the composition for Fig. 2(b) is 
C,Kr2. It is seen from Fig. 2(a)  that effects of paucity 
of atoms, in the equal-atom case, can lead to sig- 
nificant discrepancies, while the exact and approxi- 
mate probabilities approach each other asymptoti- 
cally with increasing n. In the presence of two moder- 
ately heavy atoms [Fig. 2(b)] the range of n over 
which discrepancies persist is more extended than in 
the equal-atom case. The exact expression is required 
for accurate evaluation of p+(2hlh) when the number 
of atoms in the unit cell is small. 

An illustration of the effect of atomic heterogeneity 
is given in Fig. 3 and in Table 1, where the data used 
for the construction of this figure are summarized. 
The test asymmetric unit has the composition C3oXz, 
with p = Z x / Z c  varying from 1 to 15, the IEI values 
corresponding to Figs. 3(a) ,  (b) and (c) being IE.I = 
IE2,1-1.50, 2.00 and 2.25 respectively. The high 
values of the exact probability, at large hetero- 
geneities, are associated with the smooth transition 
into the region of the Harker-Kasper  inequality 

U2-< ½(1 + U2h) (28) 
/ 

(Harker & Kasper, 1948), which has been observed 
in our calculations. However, the exact probabilities 
remain unity, or thereabout,  below the inequality 
threshold as well. 

As shown by the above illustrations, the behaviour 
of the exact probability (24) is qualitatively consistent 
with the known features of the ~1 relationship, and 
its statistical interpretations. On the other hand, the 

I °  r ÷ + + + + ÷ 

I 

+ 
P+ ++ 

+ + 

0.6 

. . . . . . . . .  ib . . . .  t~ I 5 
p: Zx/Z c 

(a) 

P+ + + 

0.6 

,b ' ' ' s ' o  . . . .  ,60 11 
(a) 

I'0 IP+ +4" + + ~ +  + + + + + + + 

0.6 

. . . . . . . . .  ,b . . . .  ,; I 5 

P:Zx/Zc 

(b) 

I'0 f +-~ + + + + p+ + ~ ~ ~ ~ ~ _ ~  + 

0.6 

. . . .  s'o . . . .  6o I0 I 11 
(b)  

Fig. 2. Effect of the number of (fight) atoms in the asymmetric 
unit. The assumed composition of the asymmetric unit of Pi is 
C,X 2, and the exact and approximate probabilities p+(2hlh) are 
displayed as functions of n. The solid line denotes the approxi- 
mate probability, computed from (27), and the centres of the 
'+' signs denote the values of the exact probability, obtained 
from (24). The IEI values are taken as IE2hl=lEhl=2.25. (a) 
The equal-atom case (X = C). (b) A moderately heterogeneous 
asymmetric unit (X = Kr, p = 6). 

I'01 + + + + + + + t" + + + + 

0 . 6  

I I I I , I I I0 15 
p=Zx/Z c 

(c) 

Fig. 3. Effects of atomic heterogeneity for selected IEI  values. The 
assumed composition of the asymmetric unit of P1 is C3oX2, 
and the exact and approximate probabilities p+(2hlh ) are dis- 
played as functions of the ratio of atomic numbers, p = Zx/Z o 
The solid line denotes the approximate probability, given by 
(27), and the centres of the '+' signs denote the values of the 
exact probability, obtained from (24). (a) IE2hl = IEhl = 1"50, (b) 
IE=,,I = l e d  = 2 .00 ,  (c) IE2,,I = l e d  = 2.25. 
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Table 1. Comparison of asymptotic and exact prob- 
abilities p±(2hlh) 

The atomic composition of the asymmetric unit was chosen for 
this comparison as C30X2, where the atomic number of X has been 
varied from Zx  = 6 to Zx  = 90, in steps of 6. The first column 
contains the heterogeneity indicator p = Z x / Z  c. The headings 
'asympt.' refer to probabilities computed from (27), and 'exact' 
denote those obtained from (24), (25) and (26). The probabilities 
listed in each column pertain to the IEI values shown in the 

corresponding column heading. 

lEhl = lE2h[ = I "50 
p+(2hlh) 

p asympt, exact 

1 0.5583 0.5589 
2 0.5647 0-5671 
3 0.5829 0.5946 
4 0.6057 0.6370 
5 0.6269 0-6886 
6 0.6444 0.7449 
7 0.6583 0.8002 
8 0.6690 0.8497 
9 0.6773 0.8907 

10 0.6839 0.9231 
11 0.6890 0.9476 
12 0.6932 0.9656 
13 0.6965 0.9783 
14 0.6993 0.9869 
15 0.7016 0-9925 

IEhl = IE2hl = 2"00 IEd = IE2hl = 2"25 
p+(2hlh) p+(2hlh) 

asympt, exact asympt, exact 

0.6792 0.6961 0.7582 0.7912 
0.6970 0.7208 0.7806 0.8217 
0.7449 0.7930 0.8365 0.8960 
0.7979 0.8807 0.8901 0.9603 
0.8403 0.9474 0.9262 0.9901 
0.8702 0.9821 0-9478 0.9984 
0.8907 0.9953 0.9607 0.9999 
0.9048 0.9991 0.9686 1.0000 
0.9147 0.9999 0.9738 1.0000 
0.9219 1.0000 0.9773 1.0000 
0.9273 1.0000 0.9797 1.0000 
0.9314 1.0000 0.9815 1.0000 
0.9345 1.0000 0.9829 1.0000 
0.9371 1.0000 0-9839 1.0000 
0-9391 1.0000 0-9847 1.0000 

asymptotic expression (27) may be quite inaccurate, 
even for moderate atomic heterogeneities and, more 
importantly, for the equal-atom case when the num- 
ber of atoms is small. 

It can be stated on the basis of the above results, 
and other calculations for different choices of the 
parameters, that the discrepancies between the exact 
and the asymptotic probabilities for the positive sign 
of E2h decrease as K increases. The region of greatest 
discrepancy, for a given K, seems to depend on the 
value of K itself. Thus, the discrepancy is greatest at 
high atomic heterogeneities for low values of K [cf. 
Fig. 3(a)], and the range of maximum discrepancy 
moves to lower heterogeneities as K increases. 

The actual discrepancies may be somewhat differ- 
ent when the commonly used atomic-number 
approximation is replaced by properly averaged 
values of the atomic scattering factors (e.g. Shmueli, 
1982). However, this is not likely to change the above 
picture to any appreciable extent. 

A result of an immediate possible practical signific- 
ance is the fact that the universally used asymptotic 
expression (27) often gives what are regarded as 
unacceptably low indications, in situations in which 
the values of the exact probability (24) would most 
usually be considered as acceptable. It therefore 
appears that the use of the exact equation (24), in 
estimating the reliability of ~ relationships, should 
very significantly promote the determination of the 
signs of structure seminvariants in the space group 
P1 - whenever there is some atomic heterogeneity in 
the structure, or the number of (equal or unequal) 
atoms in the asymmetric unit of P1 is small. 

The above exact formalism, and the possibility of 
its evaluation to any accuracy that is required cannot, 
of course, be expected to provide any remedy for 
wrong sign indications that are due to features that 
have not been allowed for by the underlying assump- 
tions (see above). The assumptions of central import- 
ance appear to be the uniform distribution of the 
atomic phase factors, 2zrh.rj, and the independence 
of the atomic contributions. While the requirement 
that all the atoms be located in general positions 
[assumption (i)] is in many cases sufficient to ensure 
.(in practice) the uniform distribution of atomic phase 
factors, this may fail to an unknown extent when 
conspicuous rational dependence is present in the 
structure. Thus, for example, with all the atoms in 
general positions, but a heavy scatterer located at 1/2, 
1/2, 1/4, in the space group P1, this uniformity may 
certainly be affected and hence also the validity of 
the probability formulae (see, for example, Haupt- 
man & Karle, 1959). An investigation of this and 
other kinds of rational dependence (Hauptman, 
1964), in the context of the present and other formal- 
isms of structure-factor statistics, certainly seems to 
be of interest. 

The validity of the almost universally made 
assumption that the atomic contributions to the struc- 
ture factor are independent [assumption (iv)] has also 
been questioned (see, for example, Wilson, 1981) but, 
to the authors' knowledge, the effects that this 
assumption may have on the univariate or multivari- 
ate p.d.f.'s of structure factors have not been investi- 
gated to any depth. In any case, the removal of the 
assumptions concerning rational and statistical 
independence should involve an incorporation of 
known structural features into the statistical formal- 
ism, rather than their 'subtraction' - as might be done, 
for example, in the case of fixed special positions. 

A comment on the computational aspects of the 
present work also seems to be in order. The statement 
that the first ten terms of (14) or (15) are sufficient 
to achieve satisfactory convergence pertains to out- 
standingly heavy atoms only, and fewer terms are 
needed in order to achieve the same convergence for 
atoms of the first few rows of the Periodic Table. The 
computing times for evaluating (24) are less than 0.1 
c.p.u, s per relationship, and no need was felt in the 
present calculations of introducing computational 
acceleration techniques. Also, such techniques 
(although usually helpful) do not yet appear to be 
vital in the computation of the exact probability for 
the positive sign of the triple product E (h) E (k) E (h + 
k) (Shmueli & Weiss, 1985). They may, however, be 
called for in similar studies of relationships of higher 
orders - at least with the computer that was used in 
this work. 

Stil~ in the computational context, we wish to 
point out that the main part of the computation, the 
evaluation of Bessel functions of general order, is 
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quite readily performed with the available polynomial 
approximations and recursion formulae (e.g. 
Abramowitz & Stegun, 1972). However, the numerical 
stability of such computations usually calls for a 
judicious use of forward and backward recursion 
techniques, which should be implemented in any 
program for computing arrays of Bessel functions of 
general order. 

We wish to thank Professors C. Giacovazzo, H. 
Hauptman, A. J. C. Wilson and M. M. Woolfson for 
their encouraging comments and questions related to 
the first version of the present manuscript, and the 
referees of this paper for pointing out the need to 
elaborate on certain 'standard' assumptions. All the 
computations were done with the aid of a Cyber 
170-855 at the Tel Aviv University Computation Cen- 
ter. The general-order Bessel functions were com- 
puted with the library subroutine BESRI, written by 
Mr David Sagin of the Computation Center. 

APPENDIX A 

Rederivation of the approximate p+(2h[h) 

It is well known that the various forms of the central 
limit theorem can be derived from analytic properties 
of the characteristic function as to-~ 0 (e.g. Kendall 
& Stuart, 1963). For example, if one has a sum of 
identically distributed independent random variables, 
Sn'=(Xl"l-...-I-Xn)/n 1/2, where (xi)=0 and (x2)=l ,  
the characteristic function of s, can be expressed as 
C"(to/nl/2), in terms of the characteristic functions 
of the x's. The central limit theorem is a consequence 
of expanding this function as 

C"(tolnl/2)=exp [n In C(tolnl/2)] 
--- exp [n In (1 - to2/2n +...)] 
... exp ( _  to2/2), (A1) 

on retaining lowest-order terms in n. But this is 
equivalent to retaining just the lowest-order terms in 
an expansion of the characteristic function and 
exponentiating them. This strategy can also be carded 
out in the present case. Corrections to the Gaussian 
can be derived by expanding higher-order terms (in 
1/n) in a Taylor series, leading to Edgeworth 
expansions (Giacovazzo, 1980). 

To carry out this program, given the exact 
expressions in (13)-(15), let us consider the lowest- 
order terms coming from (14) and (15): 

Rj(tol, to2) "" Jo(2njto,)Jo(2n,~2) 
(1 2 2  2 2  "~ --/ ' / j  to 1)(1 --/ '/j to2) 

1 2 2 - - n j ( t o l + t o ~ )  (A2) 

and 

/ j ( t o , ,  092) .".-. J2(2njtol)J,(2nsw2) 
3 2 (A3) • "~ - - /~ j  O) 1 (.02" 

The remaining Bessel functions give rise to higher- 
order corrections and are therefore neglected. Using 
these results we can write, for the lowest-order terms 
in the characteristic functions , 

G ( t o l ,  to2)  - "  1 -  ~ n j ( t o l + t o ~ )  . 3  - -  i n j t o l t o  2 

"" exp [-nj(to12 2+ to~)_ in}tolto2], (34) 

where the approximation 1+ z--- exp (z) has been 
used. Substituting (A4) into (9), we obtain the 
approximate characteristic function as 

N / 2  
C(wl, WE) 1-I exp [ 2 2 .__. _ h i ( t o  1 . q _ 0 ) 2 ) _ .  3 2 lnj to 10)2] 

j--1 

""  - ~(to~ + o '2)]  exp [ 1 2 2 

×[1 - i(tr3/2trS2/2)to2to2], (A5) 

where 
N 

0rm = E f~nj ( A 6 )  
j = l  

and the second line in (A5) has again been approxi- 
mated by expanding the second exponential to lowest 
orders in to1 and to2. 

We can now obtain the asymptotic joint p.d.f, by 
Fourier inversion of the characteristic function in 
(A5): 

oo 

p(Eh, E2h) = (1/4~r 2) ~ C(w,, to2) 
--O0 

x exp [--i(WlEh+ to2E2h)] dwl dto2 

__ : ( E h  ~t- E 2 h ) ]  -- (1/2"n') exp [ - '  2 

x[l +(tra/2trS/E)E2h(E2-1)]. (A7) 

If the last factor, in square brackets, is again 
approximated by an exponential, we obtain 

1 
- - ~ ( E h  + E2h)  p(Eh, E2h)"~--~exp [ ' 2 

+(cr3/2cr3/2)E2h(E2-1)] (A8) 

and the classical hyperbolic tangent formula for 
p+(2hlh ) (Cochran & Woolfson, 1955; Klug, 1958), 
shown in (27) in the text, can be readily derived from 
(A8). 

The linear approximation to the tangent formula 

p+(2hlh) 1 x -3/2 2 "~+z~3cr2 IE2hl(Eh-- 1) (A9) 

(Hauptman & Karle, 1953; Giacovazzo, 1980) can be 
derived directly from (A7). 
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Abstract 

The  m e t h o d  o f  j o i n t  p robab i l i t y  d is t r ibu t ions  has  been  
app l i ed  to s t ruc ture  factors  in order  to assign the 
phases  re la t ive  to the  comple t e  s t ructure  w h e n  the  
phases  c o r r e s p o n d i n g  to the a n o m a l o u s  scat terers  are 
known.  Fo rmu la s  have  been  o b t a i n e d  tha t  genera l ize  
Sim's  [Acta Cryst. (1959), 12, 813-815] d i s t r ibu t ion  
to the  case in wh ich  the a n o m a l o u s  d i spers ion  effect 
is present .  

P, q 

N 

f = f ' + i f "  

F +, F -  

F ; ,  F-p, F~,  F~ 

Notation 

n u m b e r  o f  a n o m a l o u s  and  non-  
a n o m a l o u s  scatterers respec- 
t ively in the  uni t  cell 
n u m b e r  o f  a toms in the  un i t  cell 
(N=p+q)  
general expression for the 
atomic scattering factor 
structure factors of the 
reflexions h and -h respectively 
structure factors of the p 
anomalous scatterers and of the 

0108-7673/85/050408-06501.50 

F, 

F'p, Fp 

N 

- ( f j  + f j )  
j= l  

q n o n - a n o m a l o u s  scat terers  for  
the  ref lexions h and  - h  respec-  
t ively 
s t ructure  fac tor  ( imag ina ry  com- 
p o n e n t  o f  a n o m a l o u s  d i spers ion  
omi t t ed)  
con t r i bu t i on  o f  a n o m a l o u s  scat- 
terers due  to the real  and  to the 
imag ina ry  c o m p o n e n t  o f  
a n o m a l o u s  d i spers ion  

P 
f~ = ~ f~ exp 27rihrj, 

j= l  

P 
F~ = ~, f j '  exp 2 zrihrj 

j= l  

average value oflFd 2 at given ]hi 

~s = fs l  T.II2 

! ## ~j, ~Oj 
R = F/Y 112 

normalized scattering factor of 
the j th atom 
real and imaginary parts of cj 
normalized structure factor 
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